VCU, Department of Computer Science
CMSC 302
Propositional Logic

Vojislav Kecman

All the PPT slides are based on MP Franck's and H Bingol's ones

The Fundamentals of Logic

In Rosen, §§1.1-1.4
~98 slides, ~3 lectures

30-Jan-17

Foundations of Logic

Mathematical Logic is a tool for working with elaborate compound statements.

- It includes:
- A formal language for expressing them.
- A concise notation for writing them.
- A methodology for objectively reasoning about their truth or falsity.
- It is the foundation for expressing formal proofs in all branches of mathematics.

Foundations of Logic: Overview

- Propositional logic (§1.1-1.2):
- Basic definitions. (§1.1)
- Equivalence rules \& derivations. (§1.2)
- Predicate logic (§1.3)
- Predicates.
- Quantified predicate expressions.
- Equivalences \& derivations.

30-Jan-17

Propositional Logic (§1.1)

- Propositional Logic is the logic of compound statements built from simpler statements using so-called Boolean connectives.
- Some applications in computer science
- Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases \& search engines

Definition of a Proposition

- Definition: A proposition (denoted p, q, r, \ldots) is simply:
- a statement (i.e., a declarative sentence)
- with some definite meaning, (not vague or ambiguous)
- having a truth value that's either true (T) or false (F) - it is never both, neither, or somewhere "in between!"
- However, you might not know the actual truth value,
- and, the truth value might depend on the situation or context.
- Later, we will study probability theory, in which we assign degrees of certainty ("between" T and F) to propositions.
${ }_{30-\mathrm{Jan}-\overline{17}}$ But for now: think True/False only!

Examples of Propositions

- "It is raining." (In a given situation.)
- "Beijing is the capital of China."
- "1 + 2 = 3"
- But, the following are NOT propositions:
- "Who's there?" (interrogative, question)
- "La la la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)
- "1 + 2" (expression with a non-true/false value)

30-Jan-17

FeW more	
Propositions	Not Propositions
$3+2=32$	Bring me coffee!
CMSC 302 is Bryan's favorite class.	Is CMSC 302 Amy's favorite class?
Every cow has 4 legs. There is other life in the universe.	Do you like Cake?

30-Jan-17

You now!

What sentences are not propositions?
(i) Paris is in France.
(v) $9<6$.
(ii) $\mathrm{I}+\mathrm{I}=2$.
(vi) $x=2$ is a solution of $x^{2}=4$.
(iii) $2+2=3$.
(vii) Where are you going?
(iv) London is in Denmark.
(viii) Do your homework.

Well, you got it right
vii and viii ARE NOT!
3 are True, and 3 are False!
Which ones?
30-Jan-17

Operators / Connectives

- An operator or connective combines one or more operand expressions into a larger expression. (E.g., " + " in numeric exprs.)
- Unary operators take 1 operand (e.g., -3);
- Binary operators take 2 operands (eg $3 \times$ 4).
- Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.

Some Popular Boolean Operators

Formal Name	Nickname	Arity	Symbol
Negation operator	NOT	Unary	\neg
Conjunction operator	AND	Binary	\wedge
Disjunction operator	OR	Binary	\vee
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	\leftrightarrow

30-Jan-17

The Negation Operator

- The unary negation operator " \neg " (NOT) transforms a prop. into its logical negation.
- E.g. If $p=$ "I have brown hair."
- then $\neg p=$ "I do not have brown hair."
- The truth table for NOT:
$\mathrm{T}: \equiv$ True; $\mathrm{F}: \equiv$ False
": $\equiv "$ means "is defined as"

30-Jan-17

Conjunction Truth Table

30-Jan-17

- Note that a conjunction
$p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}$ of n propositions will have 2^{n} rows in its truth table.

AND can be algebraized as PROD or MIN

- Remark. \neg and \wedge operations together are sufficient to express any Boolean truth table!
 -17

The Conjunction Operator

- The binary conjunction operator " \wedge " (AND) combines two propositions to form their logical conjunction.
- E.g. If $p=$ "I will have salad for lunch." and $q=$ "I will have steak for dinner.", then $p \wedge q=$ " I will have salad for lunch and I will have steak for dinner."

Remember: " \wedge " points up like an "A", and it means "AND"
30-Jan-17
Which of the statements are
(i) Paris is in France and $2+2=4$.
(ii) Paris is in France and $2+2=5$.
(iii) Paris is in England and $2+2=4$.
(iv) Paris is in England and $2+2=5$.
First only!
Why?
Well, see the table on a previous page

The Disjunction Operator

- The binary disjunction operator " \checkmark " (OR) combines two propositions to form their logical disjunction.
- $p=$ "My car has a bad engine."
- q="My car has a bad carburetor."
- $p \vee q=$ "Either my car has a bad engine,
or my car has a bad carburetor." After the downwardMeaning is like "and/or" in English. $\quad \begin{aligned} & \text { splits the wood, you } \\ & \text { can take } 1 \text { piece OR }\end{aligned}$
30-Jan-17 the other, or both.

Disjunction Truth Table

- Note that $p \vee q$ means that p is true, or q is true, or both are true!
- So, this operation is also called inclusive or,

p q	$p \vee q$
F F	F
F T	$\mathbf{T}{ }_{\text {Note }}^{\text {Nofference }}$
T F	T \int from AND
$\mathrm{T} T \mathrm{~T}$	
ether are also	
or MAX	

30-Jan-17 because it includes the $\mathrm{T} \quad \mathrm{T}$ T possibility that both p and q are true.

- Remark. " \neg " and " \vee " together are also universal.

$$
\begin{aligned}
& \text { OR can be algebraized as } \\
& \text { SUM or MAX }
\end{aligned}
$$

Nested Propositional Expressions

- Use parentheses to group sub-expressions: "I just saw my old riend, and either he's rown or l've shrunk." $=f \wedge(g \vee s)$
- $(f \wedge g) \vee s$ would mean something different
- $f \wedge g \vee s$ would be ambiguous
- By convention, " \neg " takes precedence over both " \wedge " and " \vee ".
- $\neg \mathrm{S} \wedge f$ means $(\neg s) \wedge f, \operatorname{not} \neg(s \wedge f)$

30-Jan-17

A Simple Exercise

- Let
$p=$ "It rained last night",
$q=$ "The sprinklers came on last night,"
$r=" T h e ~ l a w n ~ w a s ~ w e t ~ t h i s ~ m o r n i n g . " ~ " ~$
- Translate each of the following into English:
- $\neg p=$ "It didn't rain last night."
- $r \wedge \neg$ - "The lawn was wet this morning, and
- \quad it didn't rain last night."
- $\neg r \vee p \vee q=$ "Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."
30-Jan-17
The Exclusive Or Operator
- The binary exclusive-or operator " \oplus " (XOR) combines two propositions to form their logical "exclusive or" (exjunction?).
- $p=$ "I will earn an A in this course,"
- $q=$ "I will drop this course,"
- $p \oplus q=$ "I will either earn an A in this course, or I will drop it (but not both!)"

30-Jan-17

Exclusive-Or Truth Table

- Note that $p \oplus q$ means that p is true, or q is true, but not both!
- This operation is called exclusive or, because it excludes the
\(\left.\begin{array}{cc|c}p \& q \& p \oplus q

\hline \mathrm{~F} \& \mathrm{~F} \& \mathrm{~F}

\mathrm{~F} \& \mathrm{~T} \& \mathrm{~T}

\mathrm{~T} \& \mathrm{~F} \& \mathrm{~T}

\mathrm{~T} \& \mathrm{~T} \& \mathrm{~F}\end{array}\right\}\)| Note |
| :--- |
| difference |
| are true. | possibility that both p and q are true.

from OR.

- Remark. " \neg " and " \oplus " together are not universal.

In math terms, we can say XOR is true only if the sum = 1. E.g., take
30-Jan-17 the second and fourth row: $0+1=1$, means T, while $1+1=2$, means $F_{23 / 9}$

Remark: The English word "or" is commonly used in two distinct ways. Sometimes it is used in the sense of " p or q or both", i.e., at least one of the two alternatives occurs, as above, and sometimes it is used in the sense of " p or q but not both", i.e., exactly one of the two alternatives occurs. For example, the sentence "He will go to Harvard or to Yale" uses "or" in the latter sense, called the exclusive disjunction. Unless otherwise stated, "or" shall be used in the former sense. This discussion points out the precision we gain from our symbolic language: $p \vee q$ is defined by its truth table and always means " p and/or $q^{\prime \prime}$.

Natural Language is Ambiguous

- Note that English "or" can be ambiguous regarding the "both" case!
- "Pat is a singer or Pat is a writer." -
- "Pat is a man or Pat is a woman." -
\vee
\oplus

p	q	p "or" q
F	F	F
F	T	T
T	F	T
T	T	$?$

- Need context to disambiguate the meaning!
- For this class, assume "or" means inclusive.

30-Jan-17

The Implication Operator

 antecedent consequent- The implication $\dot{p} \rightarrow q$ states that p implies q.
- i.e., If p is true, then q is true; but if p is not true, then q could be either true or false.
- E.g., let $p=$ "You study hard."
$q=$ "You will get a good grade."
- $p \rightarrow q=$ "If you study hard, then you will get a good grade."
- (else, it could go either way, meaning If you don't study hard, then either you will get a good grade, or a bad one, or you will fail)

Implication Truth Table

- $p \rightarrow q$ is false only when p is true but q is not true.
- $p \rightarrow q$ does not say that p causes q !
- $p \rightarrow q$ does not require that p or q are ever true!

p	q	$p \rightarrow q$		
F	F	T		
F	T	T		
The				
T	F	$\mathrm{F}\}$		
T	only			
T	T	T		False
:---				
case!				

- E.g. " $(1=0) \rightarrow$ pigs can fly" is TRUE!

30-Jan-17
$28 / 97$

There is a simpler way to learn the IMPLICATION table than to memorize it.
It's based on THE EQUALITY

$$
p \rightarrow q \quad \text { Equals } \quad-p \vee q
$$

30-Jan-17

Well, but can the IMPLICATION be expressed by NOT and AND?

- Sure it can and we start from the following equivalency:
- $-(p \rightarrow q)$ equals $p \wedge \neg q$
- A one more negation of both sides leads to
- $p \rightarrow q$ equals $\neg(p \wedge \neg q)$

This page is the answer to the question of one of your colleagues in the last class. It is not in your Fall 2016
30-Jan-17
slides, but it will be in the future ones ©

Why does this seem wrong?

- Consider a sentence like,
- "If I were woman, then dictators are democrats!"
- In logic, we consider the sentence True because we have \mathbf{F} and \mathbf{F} which gives \mathbf{T}
- But, in normal English conversation, if I were to make this claim, you would think that I was lying.
- Why this discrepancy between logic \& language?
- "If the moon is made of green cheese, then I am richer than Bill Gates. True br False?

Cause of the Discrepancy

- In English, a sentence "if p then q " usually really implicitly means something like,
- "In all possible situations, if p then q."
- That is, "For p to be true and q false is impossible."
- Or, "I guarantee that no matter what, if p, then q."
- This can be expressed in predicate logic as:
- "For all situations s, if p is true in situation s, then q is also true in situation s"
- Formally, we could write: $\forall s, P(s) \rightarrow Q(s)$
- In our example the previous slide's sentence is logically False, because for me to be a women and for a Dictator to be a democrat is not a possible situation.

English Phrases Meaning $p \rightarrow q$

- " p implies q "
- "if p, then q "
- "if p, q "
- "when p, q "
- "whenever p, q "
- " q if p "
- " q when p "
- " q whenever p "
- "p only if q "
- " p is sufficient for q "
- " q is necessary for p "
- " q follows from p "
- " q is implied by p "
- We will see some equivalent logic expressions later.

Converse, Inverse, Contrapositive

- Some terminology, for an implication $p \rightarrow$ q :
- Its converse is: $\quad q \rightarrow p$.
- Its inverse is: $\quad \neg p \rightarrow \neg q$.
- Its contrapositive: $\neg q \rightarrow \neg p$.
- One of these three has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which?

How do we know for sure?

- Proving the equivalence of $p \rightarrow q$ and its contrapositive using truth tables:

The biconditional operator

- The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.
- $p=$ "Bush wins the 2004 election."
- $q=$ "Bush will be president for all of 2005."
- $p \leftrightarrow q=$ "If, and only if, Bush wins the 2004 election, Bush will be president for all of 2005."

Biconditional Truth Table

- $p \leftrightarrow q$ means that p and q have the same truth value.
Remark. This truth table is the exact opposite of \oplus 's!
- Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$
- $p \leftrightarrow q$ does not imply
that p and q are true, or that either of them causes the other, or that they have a common cause.
30-Jan-17

Some Alternative Notations

Name:	not	and	or	xor	implies	iff	
Propositional logic:	\neg	\wedge	\checkmark	\oplus	\rightarrow	\leftrightarrow	
Boolean algebra:	\bar{p}	$p q$	+	\oplus			
C/C++/Java (wordwise):	!	\&\&	\|		! =		==
C/C++/Java (bitwise):	\sim	\&	1	\wedge			
Logic gates:	- -	\square		D			

30-Jan-17

Bits and Bit Operations

- A bit is a binary (base 2) digit: 0 or 1 .
- Bits may be used to represent truth values.
- By convention:

0 represents "false";
1 represents "true".
Boolean algebra is like ordinary algebra
except that
variables stand for bits,

+ means "or", and multiplication means "and",
- Also, $\wedge=\min , \vee=$ MAX
- You can find more in chapter 11

30-Jan-17

Bit Strings

- A Bit string of length n is an ordered sequence (series, tuple) of $n \geq 0$ bits.
- More on sequences in §3.2.
- By convention, bit strings are (sometimes) written left to right:
- e.g. the "first" bit of the bit string " 1001101010 " is 1.
- Watch out! Another common convention is that the rightmost bit is bit \#0, the $2^{n d-r i g h t m o s t ~ i s ~ b i t ~ \# 1, ~ e t c . ~}$
- When a bit string represents a base-2 number, by convention, the first (leftmost) bit is the most significant bit. Ex. $1101_{2}=8+4+1=13$.

30-Jan-17

Bitwise Operations

- Boolean operations can be extended to operate on bit strings as well as single bits.
- E.g.:

0110110110
1100011101
1110111111 Bit-wise OR, i.e. MAX
0100010100 Bit-wise AND, i.e. min
1010101011 Bit-wise XOR, i.e. MAX except for 11

End of §1.1

- You have learned about:
- Propositions: What they are.
- Propositional logic operators'
- Symbolic notations.
- English equivalents.
- Logical meaning
- Truth tables.
- Atomic vs. compound propositions.
- Alternative notations.
- Bits and bit-strings.
- Next section: $\S 1.2$
- Propositional equivalences
- How to prove them.

Propositional Equivalence

30-Jan-17

Propositional Equivalence

(§1.2)

- Two syntactically (i.e., textually) different compound propositions may be the semantically identical (i.e., have the same meaning). We call them equivalent. Learn:
- Various equivalence rules or laws.
- How to prove equivalences using symbolic derivations. (Here, we'll use truth table)

Tautologies and Contradictions

- A tautology is a compound proposition that is true no matter what the truth values of its atomic propositions are!
- Ex. $p \vee \neg p$ [What is its truth table?]
- A contradiction is a compound proposition that is false no matter what the truth values of its atomic propositions are!!
- Ex. $p \wedge \neg p$ [Truth table?]
- Other compound propositions are contingencies.
30-Jan-17

Logical Equivalence \Leftrightarrow

- Compound proposition p is logically equivalent to compound proposition q, written $p \Leftrightarrow q$, IFF the compound proposition
Notel These 2 symbols are the 2 $p \leftrightarrow q$ is a tautology.

DIFFERENT $\stackrel{r}{3}$

In other words:
symbols

- Compound propositions p and q are logically equivalent to each other IFF p and q contain the same truth values as each other in all rows of their truth tables.

Proving Equivalence via Truth Tables

- Ex. Prove that $p \vee q \Leftrightarrow \neg(\neg p \wedge \neg q)$.
$\left.\begin{array}{c|c|c|c|c|c}p \quad q & p \vee q & \neg p & \neg q & \neg p \wedge \neg q & \neg(\neg p \wedge \neg q) \\ \hline \mathrm{F} \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \mathrm{F} \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \\ \mathrm{T} \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \\ \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \mathrm{T} \\ \mathrm{T}\end{array}\right)$

30-Jan-17

Equivalence Laws

- These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.
- They provide a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it.

30-Jan-17

Equivalence Laws - Examples

- Identity: $\quad p \wedge \mathbf{T} \Leftrightarrow p \quad p \vee F \Leftrightarrow p$
- Domination: $\quad p \vee \mathbf{T} \Leftrightarrow \mathbf{T} \quad p \wedge F \Leftrightarrow F$
- Idempotent: $\quad p \vee p \Leftrightarrow p \quad p \wedge p \Leftrightarrow p$
- Double negation: $\quad \neg \neg p \Leftrightarrow p$
- Commutative: $\quad p \vee q \Leftrightarrow q \vee p \quad p \wedge q \Leftrightarrow q \wedge p$
- Associative: $\quad(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)$ $(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)$

More Equivalence Laws

- Distributive: $\quad p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$ Not working in math $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r) \quad$ Working in math
- De Morgan's:

$$
\begin{aligned}
& \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q \\
& \neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q
\end{aligned}
$$

- Trivial tautology/contradiction:

$$
p \vee \neg p \Leftrightarrow \mathbf{T} \quad p \wedge \neg p \Leftrightarrow \mathbf{F}
$$

(1806-1871)

Defining Operators via Equivalences

- Using equivalences, we can define operators in terms of other operators.
- Exclusive or: $p \oplus q \Leftrightarrow(p \vee q) \wedge \neg(p \wedge q)$

$$
p \oplus q \Leftrightarrow(p \wedge \neg q) \vee(q \wedge \neg p)
$$

- Implies: $\quad p \rightarrow q \Leftrightarrow \neg p \vee q$
- Biconditional: $p \leftrightarrow q \Leftrightarrow(p \rightarrow q) \wedge(q \rightarrow p)$

$$
p \leftrightarrow q \Leftrightarrow \neg(p \oplus q)
$$

An Example Problem

- Check using a symbolic derivation whether $(p \wedge \neg q) \rightarrow(p \oplus r) \Leftrightarrow \neg p \vee q \vee \neg r$.
- $(p \wedge \neg q) \rightarrow(p \oplus r)$
- $\Leftrightarrow \neg(p \wedge \neg q) \vee(p \oplus r)$ [Expand definition of \rightarrow]
- $\Leftrightarrow \neg(p \wedge \neg q) \vee((p \vee r) \wedge \neg(p \wedge r))$ [Expand defn. of $\oplus]$
- $\Leftrightarrow(\neg p \vee q) \vee((p \vee r) \wedge \neg(p \wedge r))$ [DeMorgan's Law]
- cont.
$p \oplus q \Leftrightarrow(p \vee q) \wedge \neg(p \wedge q)$.
From the top of previous slide
30-Jan-17

Example Continued...

- $\Leftrightarrow(\neg p \vee q) \vee((p \vee r) \wedge \neg(p \wedge r))$
- $\Leftrightarrow(q \vee \neg p) \vee((p \vee r) \wedge \neg(p \wedge r))$
- commutes]
- $\Leftrightarrow q \vee(\neg p \vee((p \vee r) \wedge \neg(p \wedge r)))$
- $\Leftrightarrow q \vee(((\neg p \vee(p \vee r)) \wedge(\neg p \vee \neg(p \wedge r)))$ $\Leftrightarrow q \vee(((\neg p \vee p) \vee r) \wedge(\neg p \vee \neg(p \wedge r)))$ $\Leftrightarrow q \vee((\quad \mathbf{T} \vee r) \wedge(\neg p \vee \neg(p \wedge r))) \quad$ [trivail taut.] $\Leftrightarrow q \vee(\mathrm{~T} \quad \wedge(\neg p \vee \neg(p \wedge r))) \quad$ [domination] \Leftrightarrow cont.

End of Long Example

$$
\begin{aligned}
& \Leftrightarrow q \vee(\neg p \vee \neg(p \wedge r)) \\
& \Leftrightarrow q \vee(\neg p \vee(\neg p \vee \neg r)) \quad \text { [DeMorgan's] } \\
& \Leftrightarrow q \vee((\neg p \vee \neg p) \vee \neg r) \quad \text { [Assoc.] } \\
& \text { - } \Leftrightarrow q \vee(\neg p \quad \vee \neg r) \quad \text { [Idempotent] } \\
& \text { - } \Leftrightarrow(q \vee \neg p) \vee \neg r \quad[A s s o c .] \\
& \Leftrightarrow \neg p \vee q \vee \neg r \\
& \Leftrightarrow Q . E . D . \\
& \text { [Commut.] }
\end{aligned}
$$

\Leftrightarrow Remark. Q.E.D. (quod erat demonstrandum)

30-Jan-17
(Which was to be shown.)
(Which was to be shown.)
56/97

Review: Propositional Logic (§§1.1-1.2)

- Atomic propositions: p, q, r, \ldots
- Boolean operators: $\neg \wedge \vee \oplus \rightarrow \leftrightarrow$
- Compound propositions: $s: \equiv(p \wedge \neg q) \vee r$
- Equivalences: $p \wedge \neg q \Leftrightarrow \neg(p \rightarrow q)$
- Proving equivalences using:
- Truth tables.
- Symbolic derivations. $p \Leftrightarrow q \Leftrightarrow r$...

Predicate Logic (§1.3)

- Predicate logic is an extension of propositional logic that permits concisely reasoning about whole classes of entities.
- Propositional logic (recall) treats simple propositions (sentences) as atomic entities.
- In contrast, predicate logic distinguishes the subject of a sentence from its predicate.
- Remember these English grammar terms?

30-Jan-17

Applications of Predicate Logic

- It is the formal notation for writing perfectly clear, concise, and unambiguous mathematical definitions, axioms, and theorems for any branch of mathematics.
- Predicate logic with function symbols, the " $=$ " operator, and a few proof-building rules is sufficient for defining any conceivable mathematical system, and for proving anything that can be proved within that system!

30-Jan-17

Other Applications

- Predicate logic is the foundation of the field of mathematical logic, which culminated in Gödel's incompleteness theorem, which revealed the ultimate limits of mathematical thought:
- Given any finitely describable, consistent proof procedure, there will always remain some true statements that will never be proven by that procedure.
- i.e., we can't discover all mathematical truths, unless we sometimes resort to making guesses.

30-Jan-17

Practical Applications of Predicate Logic

- It is the basis for clearly expressed formal specifications for any complex system.
- It is basis for automatic theorem provers and many other Artificial Intelligence systems.
- E.g. automatic program verification systems.
- Predicate-logic like statements are supported by some of the more sophisticated database query engines and container class libraries
- these are types of programming tools.

1906-1978

Hence, it is not possible, buy using one sensor (technique, tool, algorithm, approach, camera shot) only, to get the information of both - Position and Velocity

We need at least two fast shutter shots + two time measurement + math algorithm which goes as

$$
v=\frac{p_{2}-p_{1}}{t_{2}-t_{1}}
$$

30-Jan-17 to calculate velocity

In some texts, Predicate Logic is aka Propositional Functions

Let A be a given set. A propositional function (or: an open sentence or condition) defined on A is an expression

$p(x)$

which has the property that $p(a)$ is true or false for each $a \in A$. That is, $p(x)$ becomes a statement (with truth value) whenever any element $a \in A$ is substituted for the variable x. The set A is called the domain of $p(x)$, and the set T_{p} of all elements of A for which $p(a)$ is true is called the truth set of $p(x)$. In other words,

$$
T_{p}=\{x: x \in A, p(x) \text { is true }\} \quad \text { or } \quad T_{p}=\{x: p(x)\}
$$

Frequently, when A is some set of numbers, the condition $p(x)$ has the form of an equation or inequality involving the variable x.

30-Jan-17

Subjects and Predicates

- In the sentence "The dog is sleeping":
- The phrase "the dog" denotes the subject the object or entity that the sentence is about.
- The phrase "is sleeping" denotes the predicate - a property that is true of the subject.

In predicate logic, a predicate is modeled as a function $P(\cdot)$ from objects to propositions. Here, P means is sleeping
${ }_{30-\operatorname{Jan}-17} P(x)=$ " x is sleeping" (where x is any object).

Propositional Functions

- Predicate logic generalizes the grammatical notion of a predicate to also include propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take.
- E.g. let $P(x, y, z)=$ " x gave y the grade z ", then if $x=" M i k e ", y=" M a r y ", z=" A$ ", then $P(x, y, z)=$ "Mike gave Mary the grade A."

More About Predicates

Convention. Lowercase variables $x, y, z . .$. denote objects/entities; uppercase variables $P, Q, R \ldots$ denote propositional functions (predicates).

Keep in mind that the result of applying a predicate P to an object x is the proposition $P(x)$. But the predicate P itself (e.g. $P=$ "is sleeping") is not a proposition (not a complete sentence).

- E.g. if $P(:)=$ "is a prime number",
$P(3)$ is the proposition " 3 is a prime number."

30-Jan-17

Universes of Discourse (U.D.s)

- The power of distinguishing objects from predicates is that it lets you state things about many objects at once.
- E.g., let $P(x)=$ " $x+1>x$ ". We can then say, "For any number $x, P(x)$ is true" instead of $(0+1>0) \wedge(1+1>1) \wedge(2+1>2) \wedge \ldots$
- The collection of values that a variable x can take is called x 's universe of discourse.

Quantifier Expressions

- Quantifiers provide a notation that allows us to quantify (count) how many objects in the univ. of disc. satisfy a given predicate. Quantifier defines i.e., binds objects
- " \forall " is the FOR $\forall \mathrm{LL}$ or
$P(x)$ means for all x in the u.d., P holds.
The symbol \forall can be used to define the intersection
- " \exists " is the \exists XISTS or existential quantifier. $\exists x P(x)$ means there exists an x in the u.d. (that is, 1 or more) such that $P(x)$ is true.

The symbol \exists can be used to define the union

The Universal Quantifier \forall

- Example:

Let the u.d. of x be parking spaces at the VC university.
Let $P(x)$ be the predicate " x is full."
Then the universal quantification of $P(x)$, $\forall x P(x)$, is the proposition:

- "All parking spaces at VCU are full."
- i.e., "Every parking space at VCU is full."
- i.e., "For each parking space at VCU, that space is full."

30-Jan-17

Free and Bound Variables

- An expression like $P(x)$ is said to have a free variable \times (meaning, x is undefined).
- A quantifier (either \forall or \exists) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.

Example of Binding

- $P(x, y)$ has 2 free variables, x and y.
- $\forall x P(x, y)$ has 1 free / Jariable, and one bound variable. [Which is which?]
- " $P(x)$, where $x=3$ " is another way to bind x.
- An expression with zero free variables is a bonafide (actual) proposition.
- An expression with one or more free variables is still only a predicate: e.g. let $Q(y)=\forall x P(x, y)$

30-Jan-17

Which of these two bounded expressions is true

The proposition $(\forall n \in N)(n+4>3)$ is TRUE

The proposition $(\forall n \in \mathbf{N})(n+2>8)$ is FALSE

Similarly

The proposition $(\exists n \in N)(n+4<7)$ is true since $\{n: n+4<7\}=\{1,2\} \neq \varnothing$.
The proposition $(\exists n \in \mathbb{N})(n+6<4)$ is false since $(n: n+6<4\}=\varnothing$.
30-Jan-17

Negate a Universal Quantification

- The negation of the above statement is "It is not the case that every student has taken a course in calculus", namely, $\neg \forall \mathrm{xP}(\mathrm{x})$.
- Or, put it another way, "There is at least a student in the class who has not taken a course in calculus", namely, $\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$.
- This example illustrates the following equivalence:

$$
\neg \forall x P(x) \equiv \exists x \neg P(x)
$$

30-Jan-17

Negate an Existential
 Quantification

- Example:
- Consider the statement "There is a student in the class who has taken a course in calculus", namely $\exists x Q(x)$, where $Q(x)$ is the statement " x has a course in calculus."
- The negation of this statement is the proposition "It is not the case that there is a student in the class who has taken a course in calculus", namely, $\neg \exists \mathrm{x}$ Q (x).
- This is equivalent to "Every student in this class has not taken a course in calculus", namely, $\forall x$ $\neg \mathrm{Q}(\mathrm{x})$.
- So

$$
\neg \exists \mathrm{x} \mathrm{Q}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{Q}(\mathrm{x})
$$

30-Jan-17

Negation Equivalence

- De Morgan's Laws in the case of negations of quantifiers (assuming that all the elements of u.d. can be listed)

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \neg\left(P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \cdots \wedge P\left(x_{n}\right)\right) \\
& \equiv \neg P\left(x_{1}\right) \vee \neg P\left(x_{2}\right) \vee \cdots \vee \neg P\left(x_{n}\right) \\
& \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \neg\left(P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \cdots \vee P\left(x_{n}\right)\right) \\
& \equiv \neg P\left(x_{1}\right) \wedge \neg P\left(x_{2}\right) \wedge \cdots \wedge \neg P\left(x_{n}\right) \\
& \equiv \forall x \neg P(x)
\end{aligned}
$$

30-Jan-17

Examples on Negations

- What is the negations of the following statement?
- "There is an honest politician"
- Solution:
- "There is an honest politician" is represented by $\exists x H(x)$ where $H(x)$ is the statement " x is an honest politician"
- The negation is "There is not a single honest politician" which is represented by $\neg \exists \mathrm{x} H(\mathrm{x})$, or $\forall \mathrm{x} \neg \mathrm{H}(\mathrm{x})$.

Examples on Negations (cont.)

- What are the negations of the following statements?
- "All Canadians play hockey"
- Solution:
- "All Canadians play hockey" is represented by $\forall x H(x)$ where $H(x)$ is the statement "x plays hockey"
- The negation is "Some Canadian does not play hockey", which is represented by $\exists \mathrm{x} \neg \mathrm{H}(\mathrm{x})$ or $\neg \forall \mathrm{xH}(\mathrm{x})$.

Nesting of Quantifiers (§1.4)

- Example: Let the u.d. of $x \& y$ be people.
- Let $L(x, y)=" x$ likes y " (a predicate with 2 free variables)
- Then $\exists y L(x, y)=$ "There is someone whom x likes." (A predicate w. 1 free variable, x)
- Then $\forall x(\exists y L(x, y))=$
"Everyone has someone whom they like." (A Moplidill with I free variables.)

Review: Predicate Logic (§1.3)

- Objects x, y, z, \ldots
- Predicates P, Q, R, \ldots are functions mapping objects x to propositions $P(x)$.
- Multi-argument predicates $P(x, y)$.
- Quantifiers: $[\forall x P(x)]: \equiv$ "For all x 's, $P(x)$." $[\exists x P(x)]: \equiv$ "There is an x such that $P(x)$. "
- Universes of discourse, bound \& free vars.

Quantifier Exercise

- If $R(x, y)=$ " x relies upon y," express the following in unambiguous English:
- $\forall x(\exists y R(x, y))=$ Everyone has someone to rely on.
- $\exists y(\forall x R(x, y))=\begin{aligned} & \text { There’s a poor overburdened (someone) }\end{aligned}$
- $\exists x(\forall y R(x, y))=$ There’s some needy person (someone) There's some needy person (someon
who relies upon everybody (inculuing himensen).
- $\forall y(\exists x R(x, y))=$ Everyone has someone who relies upon them
- $\forall x(\forall y R(x, y))=\frac{\text { Everyone relies upon everybody, }}{\text { (including themselves)! }}$

30-Jan-17

Natural language is ambiguous!

- "Everybody likes somebody."
- For everybody, there is somebody they like, $-\forall x \exists y$ Likes (x, y) [Probably more likely.]
- or, there is somebody (a popular person) whom everyone likes?
- $\exists y \forall x$ Likes (x, y)
- "Somebody likes everybody."
- Same problem: Depends on context, emphasis.

30-Jan-17

Still More Conventions

- Sometimes the universe of discourse is restricted within the quantification, e.g.,
$\forall x>0 P(x)$ is shorthand for
"For all x that are greater than zero, $P(x)$."
$=\forall x(x>0 \rightarrow P(x))$
$\exists x>0 P(x)$ is shorthand for
"There is an x greater than zero such that $P(x)$."
$=\exists x(x>0 \wedge P(x))$

30-Jan-17

More to Know About Binding

- $\forall x \exists x P(x)-x$ is not a free variable in $\exists x P(x)$, therefore the $\forall x$ binding isn't used.
- $(\forall x P(x)) \wedge Q(x)$ - The variable x is outside of the scope of the $\forall x$ quantifier, and is therefore free. Not a complete proposition!
- $(\forall x P(x)) \wedge(\exists x \mathrm{Q}(x))$ - This is legal, because there are 2 different x 's!
30-Jan-17

Quantifier Equivalence Laws

- Definitions of quantifiers: If u.d.=a,b,c,... $\forall x P(x) \Leftrightarrow P(\mathrm{a}) \wedge P(\mathrm{~b}) \wedge P(\mathrm{c}) \wedge \ldots$ $\exists x P(x) \Leftrightarrow P(\mathrm{a}) \vee P(\mathrm{~b}) \vee P(\mathrm{c}) \vee \ldots$
- From those, we can prove the laws:
$\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x)$
$\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$
- Which propositional equivalence laws can be used to prove this?

DeMorgan's

Negations

- We can prove the laws:
$\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$
$\neg \exists \mathrm{x} P(\mathrm{x}) \Leftrightarrow \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$

More Equivalence Laws

- $\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y)$ $\exists x \exists y P(x, y) \Leftrightarrow \exists y \exists x P(x, y)$
- $\forall x(P(x) \wedge Q(x)) \Leftrightarrow(\forall x P(x)) \wedge(\forall x Q(x))$ $\exists x(P(x) \vee Q(x)) \Leftrightarrow(\exists x P(x)) \vee(\exists x Q(x))$
- Exercise:

See if you can prove these yourself.

- What propositional equivalences did you use?

Review: Predicate Logic (§1.3 \& 1.4)

- Objects x, y, z, \ldots
- Predicates P, Q, R, \ldots are functions mapping objects x to propositions $P(x)$.
- Multi-argument predicates $P(x, y)$.
- Quantifiers: $(\forall x P(x))=$ "For all x 's, $P(x)$." $(\exists x P(x))=$ "There is an x such that $P(x)$."

30-Jan-17

More Notational Conventions

- Quantifiers bind as loosely as needed:
parenthesize $\forall x(P(x) \wedge Q(x))$
- Consecutive quantifiers of the same type can be combined:
$\forall x \forall y \forall z P(x, y, z) \Leftrightarrow$
$\forall x, y, z P(x, y, z) \quad$ or even
$\forall x y z P(x, y, z)$
- All quantified expressions can be reduced to the canonical alternating form
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \ldots P\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)$

Defining New Quantifiers

- As per their name, quantifiers can be used to express that a predicate is true of any given quantity (number) of objects.
- Define \exists ! $x P(x)$ to mean " $P(x)$ is true of exactly one x in the universe of discourse."
- \exists ! $x P(x) \Leftrightarrow \exists x(P(x) \wedge \neg \exists y(P(y) \wedge y \neq x))$
"There is an x such that $P(x)$, where there is no y such that $P(y)$ and y is other than x."

30-Jan-17

Examples

- Can predicate logic say "there exist at least two objects with property P "?
-

Yes, that's easy:
$\exists x \exists y(P(x) \wedge P(y) \wedge x \neq y)$

30-Jan-17

Examples ...

- Can predicate logic say "there exist exactly two objects with property P"?
-

Yes:

```
\existsx\existsy(P(x)^P(y)^x\not=y^
    \forall (P(z)->(z=x\veez=y))
```

30-Jan-17

Deduction Example

- Definitions:
$s: \equiv$ Socrates (ancient Greek philosopher);
$H(x): \equiv$ " x is human";
$M(x): \equiv$ " x is mortal".
- Premises:

$$
\begin{array}{ll}
H(s) & \text { Socrates is human. } \\
\forall x H(x) \rightarrow M(x) & \text { All humans are mortal. }
\end{array}
$$

Deduction Example Continued

- Some valid conclusions you can draw:
- $H(s) \rightarrow M(s) \quad[$ Instantiate universal.]
- If Socrates is human then he is mortal.
- $\quad \neg H(\mathrm{~s}) \vee M(\mathrm{~s})$

Socrates is inhuman or mortal.

- $H(s) \wedge(\neg H(s) \vee M(s))$
- Socrates is human, and also either inhuman or mortal
- $(H(s) \wedge \neg H(s)) \vee(H(s) \wedge M(s)) \quad$ [Apply distributive law.]
- $\mathbf{F} \vee(H(s) \wedge M(s))$
[Trivial contradiction.]
- $H(\mathrm{~s}) \wedge M(\mathrm{~s})$ [Use identity law.]

M(s)
30-Jan-17

Another Example

- Definitions:
$H(x): \equiv$ " x is human"
$M(x): \equiv$ " x is mortal";
$G(x): \equiv$ " x is a god"
- Premises:
- $\forall x H(x) \rightarrow M(x)$ ("Humans are mortal") and
- $\forall x$ G(x) $\rightarrow \neg M(x)$ ("Gods are immortal").
- Show that $\neg \exists x(H(x) \wedge G(x))$
("No human is a god.")

30-Jan-17

The Derivation

```
- \(\forall x H(x) \rightarrow M(x) \quad\) ("Humans are mortal") and
    \(-\forall x G(x) \rightarrow \neg M(x) \quad\) ("Gods are immortal").
    \(-\neg \exists x(H(x) \wedge G(x)) \quad(" N o\) human is a god.")
```

$\forall x H(x) \rightarrow M(x)$ and $\forall x G(x) \rightarrow \neg M(x)$.
$\forall x \neg M(x) \rightarrow \neg H(x)$ [Contrapositive.]
$\forall x[G(x) \rightarrow \neg M(x)] \wedge[\neg M(x) \rightarrow \neg H(x)]$
$\forall x G(x) \rightarrow \neg H(x) \quad[$ Transitivity of \rightarrow.]

- $\forall x \neg G(x) \vee \neg H(x) \quad$ [Definition of \rightarrow.]
- $\forall x \neg(G(x) \wedge H(x)) \quad$ [DeMorgan's law.]
- $\neg \exists x G(x) \wedge H(x) \quad$ [An equivalence law.]
- $\neg \exists x(H(x) \wedge G(x))$ [commutativity]

30-Jan-17

End of §1.3-1.4, Predicate Logic

- From these sections you should have learned:
- Predicate logic notation \& conventions
- Conversions: predicate logic \leftrightarrow clear English
- Meaning of quantifiers, equivalences
- Simple reasoning with quantifiers
- Upcoming topics:
- Set theory -
- a language for talking about collections of objects.

References

- Rosen

Discrete Mathematics and its Applications, 6e Mc GrawHill, 2008

