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Foundations of Logic
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Foundations of Logic

• Mathematical Logic is a tool for working with 
elaborate compound statements.  

• It includes:
• A formal language for expressing them.
• A concise notation for writing them.
• A methodology for objectively reasoning about 

their truth or falsity.
• It is the foundation for expressing formal proofs 

in all branches of mathematics.
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Foundations of Logic: Overview

• Propositional logic (§1.1-1.2):
– Basic definitions. (§1.1)
– Equivalence rules & derivations. (§1.2)

• Predicate logic (§1.3)
– Predicates.
– Quantified predicate expressions.
– Equivalences & derivations.
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Propositional Logic (§1.1)
• Propositional Logic is the logic of 

compound statements built from simpler 
statements using so-called Boolean
connectives.

• Some applications in computer science
• Design of digital electronic circuits.
• Expressing conditions in programs.
• Queries to databases & search engines.

George Boole
(1815-1864)

Chrysippus of Soli
(ca. 281 B.C. – 205 B.C.)
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Definition of a Proposition

• Definition: A proposition (denoted p, q, r, …) is 
simply:

• a statement (i.e., a declarative sentence)
– with some definite meaning, (not vague or ambiguous)

• having a truth value that’s either true (T) or false (F)
– it is never both, neither, or somewhere “in between!”

• However, you might not know the actual truth value, 
• and, the truth value might depend on the situation or context.

• Later, we will study probability theory, in which we assign 
degrees of certainty (“between” T and F) to propositions.  
– But for now: think True/False only!
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Examples of Propositions
• “It is raining.” (In a given situation.)
• “Beijing is the capital of China.”
• “1 + 2 = 3”

• But, the following are NOT propositions:
• “Who’s there?” (interrogative, question)
• “La la la la la.” (meaningless interjection)
• “Just do it!” (imperative, command)
• “Yeah, I sorta dunno, whatever...” (vague)
• “1 + 2” (expression with a non-true/false value)
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Few more

Is CMSC 302 Amy’s favorite 
class?

CMSC 302 is Bryan’s favorite 
class.

Do you like Cake?There is other life in the 
universe.

3 + 2Every cow has 4 legs.

Bring me coffee!3 + 2 = 32

Not PropositionsPropositions
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You now! 
What sentences are not propositions?

Well, you got it right

vii and viii ARE NOT!

3 are True, and 3 are False!

Which ones?
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• An operator or connective combines 
one or more operand expressions into a 
larger expression.  (E.g., “+” in numeric 
exprs.)
– Unary operators take 1 operand (e.g., −3); 
– Binary operators take 2 operands (eg 3 

4).
• Propositional or Boolean operators 

operate on propositions (or their truth 
values) instead of on numbers.

Operators / Connectives

30-Jan-17 12/97

Some Popular Boolean 
Operators

↔BinaryIFFBiconditional operator

BinaryIMPLIESImplication operator

BinaryXORExclusive-OR operator

Disjunction operator

Conjunction operator

Negation operator

Formal Name

BinaryOR

BinaryAND

¬UnaryNOT

SymbolArityNickname
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The Negation Operator

• The unary negation operator “¬” (NOT) 
transforms a prop. into its logical negation.

• E.g. If p = “I have brown hair.”
• then ¬p = “I do not have brown hair.”
• The truth table for NOT:

p p
T F 
F T 

 

 

T :≡ True;  F :≡ False

“:≡” means “is defined as” Operand
column

Result
column

30-Jan-17 14/97

The Conjunction Operator

• The binary conjunction operator “” (AND) 
combines two propositions to form their 
logical conjunction.

• E.g. If 
p=“I will have salad for lunch.” and 
q=“I will have steak for dinner.”, then 
pq=“I will have salad for lunch and

I will have steak for dinner.”
Remember: “”” points up like an points up like an ““AA””, and it means , and it means ““NDND””

NDND

30-Jan-17 15/97

• Note that a
conjunction
p1  p2  …  pn
of n propositions
will have 2n rows
in its truth table.

• Remark. ¬ and  operations together are 
sufficient to express any Boolean truth table!

Conjunction Truth Table

p q pq
F F F
F T F
T F F
T T T

Operand columns

AND can be algebraized as

PROD   or   MIN

30-Jan-17 16/97

Which of the statements are 
TRUE?

First only!

Why?

Well, see the table on a previous page
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The Disjunction Operator

• The binary disjunction operator “” (OR) 
combines two propositions to form their 
logical disjunction.

• p=“My car has a bad engine.”
• q=“My car has a bad carburetor.”
• pq=“Either my car has a bad engine, 

or my car has a bad carburetor.” After the downward-
pointing “axe” of “””
splits the wood, yousplits the wood, you
can take 1 piece OR can take 1 piece OR 
the other, or both.the other, or both.



Meaning is like “and/or” in English.
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• Note that pq means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,
because it includes the
possibility that both p and q are true.

• Remark.“¬” and “” together are also 
universal.

Disjunction Truth Table

p q pq
F F F
F T T
T F T
T T T

Note
difference
from AND

OR can be algebraized as

SUM   or   MAX
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Which of the statements are 
FALSE?

Last only!

Why?
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Nested Propositional 
Expressions

• Use parentheses to group sub-expressions:
“I just saw my old friend, and either he’s grown
or I’ve shrunk.” = f  (g  s)
– (f  g)  s would mean something different
– f  g  s would be ambiguous

• By convention, “¬” takes precedence over both 
“” and “”.
– ¬s  f means   (¬s)  f  ,   not   ¬ (s  f)
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A Simple Exercise

• Let 
p=“It rained last night”, 
q=“The sprinklers came on last night,”
r=“The lawn was wet this morning.”

• Translate each of the following into English:
• ¬p = 
• r  ¬p = 
• ¬ r  p  q =

“It didn’t rain last night.”
“The lawn was wet this morning, and
it didn’t rain last night.”

“Either the lawn wasn’t wet this 
morning, or it rained last night, or 
the sprinklers came on last night.”
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The Exclusive Or Operator

• The binary exclusive-or operator “”
(XOR) combines two propositions to form 
their logical “exclusive or” (exjunction?).

• p = “I will earn an A in this course,”
• q = “I will drop this course,”
• p  q = “I will either earn an A in this 

course, or I will drop it (but not both!)”

30-Jan-17 23/97

• Note that pq means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,
because it excludes the
possibility that both p and q are true.

• Remark. “¬” and “” together are not
universal.

Exclusive-Or Truth Table

p q pq
F F F
F T T
T F T
T T F Note

difference
from OR.

In math terms, we can say XOR is true only if the sum = 1. E.g., take 
the second and fourth row: 0+1 = 1, means T,  while 1+1 = 2,  means F 30-Jan-17 24/97
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• Note that English “or” can be ambiguous
regarding the “both” case!

• “Pat is a singer or
Pat is a writer.” -

• “Pat is a man or
Pat is a woman.” -

• Need context to disambiguate the meaning!
• For this class, assume “or” means inclusive.

Natural Language is Ambiguous

p q p "or" q
F F F
F T T
T F T
T T ?
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AND ORXOR

IDENTITY or

BICONITIONAL

IMPLICATION

Table 3.1 is from V. Kecman’s The MIT Press Book, 2001
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The Implication Operator

• The implication p  q states that p implies q.
• i.e., If p is true, then q is true; but if p is not 

true, then q could be either true or false.
• E.g., let p = “You study hard.”

q = “You will get a good grade.”
• p  q = “If you study hard, then you will get a 

good grade.”
• (else, it could go either way, meaning If you don’t 

study hard, then either you will get a good 
grade, or a bad one, or you will fail)

antecedent consequent

30-Jan-17 28/97

Implication Truth Table
• p  q is false only when

p is true but q is not true.

• p  q   does not say
that p causes q!

• p  q   does not require
that p or q are ever true!

• E.g. “(1=0)  pigs can fly” is TRUE!

p q pq
F F T 
F T T 
T F F 
T T T 

 

 

The 
only
False
case!
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There is a simpler way to learn the 
IMPLICATION table than to 

memorize it.
It’s based on THE EQUALITY

pq EQUALS p¬ q

30-Jan-17 30/97

Well, but can the IMPLICATION 
be expressed by NOT and AND?

• Sure it can and we start from the following 
equivalency:

• (         )                p  q
• A one more negation of both sides leads 

to
• (p   q)                                    

pq¬ EQUALS ¬

pq EQUALS ¬ ¬

This page is the answer to the question of one of your 
colleagues in the last class. It is not in your Fall 2016 

slides, but it will be in the future ones 
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Examples of Implications
• “If this lecture ever ends, then the sun will rise 

tomorrow.” True or False?

• “If Tuesday is a day of the week, then I am a 
penguin.” True or False?

• “If 1+1=6, then Obama is president.”
True or False?

• “If the moon is made of green cheese, then I 
am richer than Bill Gates.” True or False? 30-Jan-17 32/97

Why does this seem wrong?
• Consider a sentence like,

– “If I were woman, then dictators are democrats!”

• In logic, we consider the sentence True because we 
have F and F which gives  T

• But, in normal English conversation, if I were to 
make this claim, you would think that I was lying.

– Why this discrepancy between logic & language?
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Cause of the Discrepancy
• In English, a sentence “if p then q” usually really implicitly

means something like,
– “In all possible situations, if p then q.”

• That is, “For p to be true and q false is impossible.”
• Or, “I guarantee that no matter what, if p, then q.”

• This can be expressed in predicate logic as:
– “For all situations s, if p is true in situation s, then q is also true in 

situation s”
– Formally, we could write: s, P(s) → Q(s)

• In our example the previous slide’s sentence is logically 
False, because for me to be a women and for a Dictator to 
be a democrat is not a possible situation.
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English Phrases Meaning p  q

• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for q”
• “q is necessary for p”
• “q follows from p”
• “q is implied by p”

• We will see some 
equivalent logic 
expressions later.
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Converse, Inverse, Contrapositive

• Some terminology, for an implication p 
q:

• Its converse is: q  p.
• Its inverse is: ¬p  ¬q.
• Its contrapositive: ¬q  ¬ p.
• One of these three has the same meaning

(same truth table) as p  q.  Can you 
figure out which?
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How do we know for sure?

• Proving the equivalence of p  q and its 
contrapositive using truth tables:

p q q p pq q p
F F T T T T
F T F T T T
T F T F F F
T T F F T T
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The biconditional operator

• The biconditional p  q states that p is true if 
and only if (IFF) q is true.

• p = “Bush wins the 2004 election.”
• q = “Bush will be president for all of 2005.”
• p  q = “If, and only if, Bush wins the 2004 

election, Bush will be president for all of 2005.”

2004 I’m still
here!

2005

30-Jan-17 38/97

Biconditional Truth Table

• p  q means that p and q
have the same truth value.

• Remark. This truth table is the
exact opposite of ’s!

• Thus, p  q means ¬(p  q)

• p  q does not imply
that p and q are true, or that either of them 
causes the other, or that they have a common 
cause.

p q p  q
F F T
F T F
T F F
T T T
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Boolean Operations Summary
• We have seen 

1 unary operator (out of the 4 possible) and 
5 binary operators (out of the 16 possible).  
Their truth tables are below.

p q p pq pq pq pq pq
F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T
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Some Alternative Notations

Name: not and or xor implies iff
Propositional logic:      
Boolean algebra: p pq + 
C/C++/Java (wordwise): ! && || != ==
C/C++/Java (bitwise): ~ & | ^
Logic gates:
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Bits and Bit Operations
• A bit is a binary (base 2) digit: 0 or 1.
• Bits may be used to represent truth values.
• By convention: 

0 represents “false”; 
1 represents “true”.

• Boolean algebra is like ordinary algebra 
except that 
variables stand for bits, 
+ means “or”, and multiplication means “and”,

• Also,  = min,  = MAX
– You can find more in chapter 11.
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Bit Strings
• A Bit string of length n is an ordered sequence 

(series, tuple) of n0 bits.
– More on sequences in §3.2.

• By convention, bit strings are (sometimes) 
written left to right: 
– e.g. the “first” bit of the bit string “1001101010” is 1.
– Watch out! Another common convention is that the 

rightmost bit is bit #0, the 2nd-rightmost is bit #1, etc.
• When a bit string represents a base-2 number, 

by convention, the first (leftmost) bit is the most 
significant bit.  Ex. 11012=8+4+1=13.
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Bitwise Operations

• Boolean operations can be extended to 
operate on bit strings as well as single bits.

• E.g.:
01 1011 0110
11 0001 1101
11 1011 1111  Bit-wise OR, i.e. MAX
01 0001 0100  Bit-wise AND, i.e. min
10 1010 1011  Bit-wise XOR, i.e. MAX  

except for 1 1
30-Jan-17 44/97

End of §1.1

• You have learned 
about:

• Propositions: What 
they are.

• Propositional logic 
operators’
– Symbolic notations.
– English equivalents.
– Logical meaning.
– Truth tables.

• Atomic vs. compound 
propositions.

• Alternative notations.
• Bits and bit-strings.
• Next section: §1.2

– Propositional 
equivalences.

– How to prove them.
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Propositional Equivalence

30-Jan-17 46/97

Propositional Equivalence 
(§1.2)

• Two syntactically (i.e., textually) different 
compound propositions may be the 
semantically identical (i.e., have the same 
meaning).  We call them equivalent. 
Learn:

• Various equivalence rules or laws.
• How to prove equivalences using symbolic 

derivations. (Here, we’ll use truth table)

30-Jan-17 47/97

Tautologies and Contradictions

• A tautology is a compound proposition that 
is true no matter what the truth values of 
its atomic propositions are!

• Ex. p  p [What is its truth table?]
• A contradiction is a compound proposition 

that is false no matter what the truth 
values of its atomic propositions are!!  

• Ex. p  p  [Truth table?]
• Other compound propositions are 

contingencies.
30-Jan-17 48/97

Logical Equivalence   
• Compound proposition p is logically 

equivalent to compound proposition q, 
written pq, IFF the compound proposition 
pq is a tautology.

In other words:
• Compound propositions p and q are logically 

equivalent to each other IFF p and q contain 
the same truth values as each other in all
rows of their truth tables.

Note! These 
2 symbols 
are the 2 

DIFFERENT 
symbols
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• Ex. Prove that pq  (p  q).

p q ppqq pp qq pp    qq ((pp    qq))
F F
F T
T F
T T

Proving Equivalence
via Truth Tables

F
T

T
T

T

T

T

T
T
T

F
F

F

F

F
F
F

F

T
T

30-Jan-17 50/97

Equivalence Laws

• These are similar to the arithmetic
identities you may have learned in 
algebra, but for propositional equivalences 
instead.

• They provide a pattern or template that 
can be used to match all or part of a much 
more complicated proposition and to find 
an equivalence for it.
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Equivalence Laws - Examples

• Identity:             pT  p      pF  p
• Domination:      pT  T      pF  F
• Idempotent:       pp  p       pp  p
• Double negation:       p  p
• Commutative:  pq  qp    pq  qp
• Associative:          (pq)r  p(qr)

(pq)r  p(qr)
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More Equivalence Laws

• Distributive:     p(qr)  (pq)(pr)
p(qr)  (pq)(pr)

• De Morgan’s:
(pq)  p  q
(pq)  p  q

• Trivial tautology/contradiction:
p  p  T p  p  F Augustus

De Morgan
(1806-1871)

Not working in math

Working in math

If  =+, and =*
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Defining Operators via Equivalences

• Using equivalences, we can define
operators in terms of other operators.

• Exclusive or:   pq  (pq)(pq)
pq  (pq)(qp)

• Implies:           pq  p  q
• Biconditional: pq  (pq)  (qp)

pq  (pq)

30-Jan-17 54/97

An Example Problem

• Check using a symbolic derivation whether 
(p  q)  (p  r)  p  q  r.

• (p  q)  (p  r)
•  (p  q)  (p  r) [Expand definition of ]

•  (p  q)  ((p  r)  (p  r)) [Expand defn. of ]

•  (p  q)  ((p  r)  (p  r)) [DeMorgan’s Law]

• cont.

p q EQUALS p¬ q

From the top of previous slide
pq  (pq)(pq)

30-Jan-17 55/97

Example Continued...

•  (p  q)  ((p  r)  (p  r))
•  (q  p)  ((p  r)  (p  r)) [ commutes]

•  q  (p  ((p  r)  (p  r))) [ associative]

•  q  (((p  (p  r))  (p  (p  r))) [distrib.  over 

 q  (((p  p)   r)   (p  (p  r))) [assoc.] 

 q  ((        T  r)    (p  (p  r))) [trivail taut.]

 q  (    T  (p  (p  r)))     [domination]

 q  (                             p  (p  r)) [identity]

 cont.

30-Jan-17 56/97

End of Long Example

 q  (p  (p  r))
 q  (p  (p  r)) [DeMorgan’s] 

 q  ((p  p)  r) [Assoc.]

•  q  (  p  r) [Idempotent] 

•  (q  p)  r [Assoc.] 

 p  q  r [Commut.] 

Q.E.D. 

Remark. Q.E.D. (quod erat demonstrandum)

(Which was to be shown.)
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Review: Propositional Logic
(§§1.1-1.2)

• Atomic propositions: p, q, r, …
• Boolean operators:      
• Compound propositions: s : (p  q)  r
• Equivalences: pq  (p  q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p  q  r …

30-Jan-17 58/97

Predicate Logic

30-Jan-17 59/97

Predicate Logic (§1.3)
• Predicate logic is an extension of 

propositional logic that permits concisely 
reasoning about whole classes of entities.

• Propositional logic (recall) treats simple 
propositions (sentences) as atomic 
entities.

• In contrast, predicate logic distinguishes 
the subject of a sentence from its 
predicate.
– Remember these English grammar terms?

30-Jan-17 60/97

Applications of Predicate Logic

• It is the formal notation for writing perfectly 
clear, concise, and unambiguous 
mathematical definitions, axioms, and 
theorems for any branch of mathematics.  

• Predicate logic with function symbols, the “=” operator, 
and a few proof-building rules is sufficient for defining 
any conceivable mathematical system, and for proving 
anything that can be proved within that system!
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Other Applications
• Predicate logic is the foundation of the

field of mathematical logic, which 
culminated in Gödel’s incompleteness 
theorem, which revealed the ultimate 
limits of mathematical thought:
– Given any finitely describable, consistent 

proof procedure, there will always remain some
true statements that will never be proven
by that procedure.

• i.e., we can’t discover all mathematical truths, 
unless we sometimes resort to making guesses.

Kurt Gödel
1906-1978

30-Jan-17 62/97

Digression 

Hence, it is not possible, buy using one sensor (technique, tool, algorithm, approach, 
camera shot) only, to get the information of both – Position and Velocity

We need at least two fast shutter shots + two time measurement + math algorithm which goes as

to calculate velocity

2 1

2 1

p pv
t t
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Practical Applications 
of Predicate Logic

• It is the basis for clearly expressed formal 
specifications for any complex system.

• It is basis for automatic theorem provers and 
many other Artificial Intelligence systems.
– E.g. automatic program verification systems.

• Predicate-logic like statements are supported by 
some of the more sophisticated database query 
engines and container class libraries
– these are types of programming tools.

30-Jan-17 64/97

In some texts, Predicate Logic is 
aka Propositional Functions
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Connect this with an English sentence:       The dog     is    sleeping
S W             O

Subjects and Predicates
• In the sentence “The dog is sleeping”:

– The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.

– The phrase “is sleeping” denotes the predicate - a 
property that is true of the subject.

In predicate logic, a predicate is modeled as a function
P(·) from objects to propositions. Here, P means is 
sleeping

P(x) = “x is sleeping” (where x is any object).

Here,              W  &  O              are jointly called      PREDICATE

30-Jan-17 66/97

More About Predicates
• Convention. Lowercase variables x, y, z... denote 

objects/entities; uppercase variables P, Q, R…
denote propositional functions (predicates).

• Remark. Keep in mind that the result of applying
a predicate P to an object x is the proposition 
P(x). But the predicate P itself (e.g. P=“is 
sleeping”) is not a proposition (not a complete 
sentence).
– E.g. if P(:) = “ is a prime number”,

P(3) is the proposition “3 is a prime number.”
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Propositional Functions

• Predicate logic generalizes the grammatical 
notion of a predicate to also include 
propositional functions of any number of 
arguments, each of which may take any
grammatical role that a noun can take.

– E.g. let P(x,y,z) = “x gave y the grade z”, then if
x=“Mike”, y=“Mary”, z=“A”, then P(x,y,z) = “Mike 
gave Mary the grade A.”

30-Jan-17 68/97

Universes of Discourse (U.D.s)
• The power of distinguishing objects from 

predicates is that it lets you state things about 
many objects at once.

• E.g., let P(x)=“x+1>x”.  We can then say,
“For any number x, P(x) is true” instead of
(0+1>0)  (1+1>1)  (2+1>2)  ...

• The collection of values that a variable x can 
take is called x’s universe of discourse.



18

30-Jan-17 69/97

Quantifier Expressions
• Quantifiers provide a notation that allows us 

to quantify (count) how many objects in the 
univ. of disc. satisfy a given predicate. 
Quantifier defines i.e., binds objects

• “” is the FORLL or universal quantifier.
x P(x) means for all x in the u.d., P holds.

• “” is the XISTS or existential quantifier.
x P(x) means there exists an x in the u.d. 
(that is, 1 or more) such that P(x) is true.
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The Universal Quantifier 

• Example: 
Let the u.d. of x be parking spaces at the 
VC university.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), 
x P(x), is the proposition:
– “All parking spaces at VCU are full.”
– i.e., “Every parking space at VCU is full.”
– i.e., “For each parking space at VCU, that space is full.”
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The Existential Quantifier 

• Example: 
Let the u.d. of x be parking spaces at the 
VCU.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), 
x P(x), is the proposition:
– “Some parking space at VCU is full.”
– “There is a parking space at VCU that is full.”
– “At least one parking space at VCU is full.”

30-Jan-17 72/97

Free and Bound Variables

• An expression like P(x) is said to have a 
free variable x (meaning, x is undefined).

• A quantifier (either  or ) operates on an 
expression having one or more free 
variables, and binds one or more of those 
variables, to produce an expression 
having one or more bound variables.
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Example of Binding

• P(x,y) has 2 free variables, x and y.
• x P(x,y) has 1 free   variable, and one bound 

variable.  [Which is which?]
• “P(x), where x=3” is another way to bind x.
• An expression with zero free variables is a bona-

fide (actual) proposition.
• An expression with one or more free variables is 

still only a predicate: e.g. let Q(y) = x P(x,y)
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Which of these two bounded 
expressions is true  

TRUE

FALSE

Similarly
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Negations on Quantifiers

• We will often want to consider the negation 
of a quantified expression. 

• Example: 
– Consider the statement “Every student in the 

class has taken a course in calculus.”
– This statement is a universal quantification, 

namely, x P(x) where P(x) is the statement 
“x has taken a course in calculus”
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Negate a Universal Quantification

• The negation of the above statement is “It is 
not the case that every student has taken a 
course in calculus”, namely, x P(x).

• Or, put it another way, “There is at least a 
student in the class who has not taken a 
course in calculus”, namely, xP(x).

• This example illustrates the following 
equivalence:

x P(x)   xP(x)
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Negate an Existential 
Quantification 

• Example:
– Consider the statement “There is a student in the 

class who has taken a course in calculus”, namely 
x Q(x), where Q(x) is the statement “x has a course 
in calculus.”

• The negation of this statement is the proposition 
“It is not the case that there is a student in the 
class who has taken a course in calculus”, 
namely, x Q(x).

• This is equivalent to “Every student in this class 
has not taken a course in calculus”, namely, x 
Q(x).

• So x Q(x)  x Q(x)
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Negation Equivalence
• De Morgan’s Laws in the case of negations of 

quantifiers (assuming that all the elements of 
u.d. can be listed)
x P(x)   (P(x1)  P(x2)   P(xn)) 
 P(x1)  P(x2)   P(xn)
 x P(x)  

x P(x)   (P(x1)  P(x2)   P(xn)) 
 P(x1)  P(x2)   P(xn)
 x P(x) 
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Examples on Negations
• What is the negations of the following 

statement? 
– “There is an honest politician”

• Solution:
– “There is an honest politician” is 

represented by x H(x) where H(x) is the 
statement “x is an honest politician”

– The negation is “There is not a single 
honest politician” which is represented 
by x H(x), or x H(x).
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Examples on Negations (cont.)
• What are the negations of the 

following statements? 
– “All Canadians play hockey”

• Solution:
– “All Canadians play hockey” is 

represented by x H(x) where H(x) is the 
statement “x plays hockey”

– The negation is “Some Canadian does 
not play hockey”, which is represented 
by x H(x), or x H(x).
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Nesting of Quantifiers (§1.4)

• Example: Let the u.d. of x & y be people.
• Let L(x,y)=“x likes y” (a predicate with 2 

free variables)
• Then y L(x,y) = “There is someone whom 

x likes.” (A predicate w. 1 free variable, x)
• Then x (y L(x,y)) =

“Everyone has someone whom they like.”
(A __________ with ___ free variables.)
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Review: Predicate Logic (§1.3)

• Objects x, y, z, …
• Predicates P, Q, R, … are functions 

mapping objects x to propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: [x P(x)] :≡ “For all x’s, P(x).”

[x P(x)] :≡ “There is an x such that P(x).”
• Universes of discourse, bound & free vars.
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Quantifier Exercise

• If R(x,y)=“x relies upon y,” express the 
following in unambiguous English:

• x(y R(x,y))=

• y(x R(x,y))=

• x(y R(x,y))=

• y(x R(x,y))=

• x(y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened (someone) 
soul whom everyone relies upon (including himself)!

There’s some needy person (someone) 
who relies upon everybody (including himself).

Everyone has someone who relies upon them

Everyone relies upon everybody, 
(including themselves)!
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Natural language is ambiguous!

• “Everybody likes somebody.”
– For everybody, there is somebody they like,

• x y Likes(x,y)
– or, there is somebody (a popular person) 

whom everyone likes?
• y x Likes(x,y)

• “Somebody likes everybody.”
– Same problem: Depends on context, 

emphasis.

[Probably more likely.]
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Still More Conventions

• Sometimes the universe of discourse is 
restricted within the quantification, e.g.,

– x>0 P(x) is shorthand for
“For all x that are greater than zero, P(x).”
=x (x>0  P(x))

– x>0 P(x) is shorthand for
“There is an x greater than zero such that P(x).”
=x (x>0  P(x))
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More to Know About Binding
• x x P(x) - x is not a free variable in 
x P(x), therefore the x binding isn’t 
used.

• (x P(x))  Q(x) - The variable x is outside 
of the scope of the x quantifier, and is 
therefore free.  Not a complete 
proposition!

• (x P(x))  (x Q(x)) – This is legal, 
because there are 2 different x’s!

P(x):=x>1, Q(x):=x<10
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Quantifier Equivalence Laws

• Definitions of quantifiers: If u.d.=a,b,c,…
x P(x)  P(a)  P(b)  P(c)  …
x P(x)  P(a)  P(b)  P(c)  …

• From those, we can prove the laws:
x P(x)  x P(x)
x P(x)  x P(x)

• Which propositional equivalence laws 
can be used to prove this?  
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Negations

• We can prove the laws:
¬x P(x)  x ¬P(x)
¬x P(x)  x ¬P(x)
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More Equivalence Laws

• x y P(x,y)  y x P(x,y)
x y P(x,y)  y x P(x,y)

• x (P(x)  Q(x))  (x P(x))  (x Q(x))
x (P(x)  Q(x))  (x P(x))  (x Q(x))

• Exercise: 
See if you can prove these yourself.

– What propositional equivalences did you use?
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Review: Predicate Logic (§1.3 & 1.4)

• Objects x, y, z, …
• Predicates P, Q, R, … are functions 

mapping objects x to propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: (x P(x)) =“For all x’s, P(x).”

(x P(x))=“There is an x such that P(x).”
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More Notational Conventions
• Quantifiers bind as loosely as needed:

parenthesize x P(x)  Q(x)
• Consecutive quantifiers of the same type can 

be combined: 
x y z P(x,y,z) 
x,y,z P(x,y,z)    or even    
xyz P(x,y,z)

• All quantified expressions can be reduced
to the canonical alternating form 
x1x2x3x4… P(x1, x2, x3, x4, …)

(               )
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Defining New Quantifiers
• As per their name, quantifiers can be used to 

express that a predicate is true of any given 
quantity (number) of objects.

• Define !x P(x) to mean “P(x) is true of exactly 
one x in the universe of discourse.”

• !x P(x)  x (P(x)  y (P(y)  y x))
“There is an x such that P(x), where there is 
no y such that P(y) and y is other than x.”
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Examples

• Can predicate logic say “there exist at 
least two objects with property P”?  

•
Yes, that’s easy:
x y (P(x)  P(y)  x y)
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Examples ...

• Can predicate logic say “there exist 
exactly two objects with property P”?

•
Yes:
x y (P(x)  P(y)  x y 

z (P(z)  (z= x  z= y ))
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Deduction Example

• Definitions:
s :≡ Socrates (ancient Greek philosopher);
H(x) :≡ “x is human”;
M(x) :≡ “x is mortal”.

• Premises:
H(s)                    Socrates is human.
x H(x)M(x)      All humans are mortal.
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Deduction Example Continued
• Some valid conclusions you can draw:

• H(s)M(s)      [Instantiate universal.]
– If Socrates is human then he is mortal.

• H(s)  M(s)                           
– Socrates is inhuman or mortal.

• H(s)  (H(s)  M(s)) 
– Socrates is human, and also either inhuman or mortal.

• (H(s)  H(s))  (H(s)  M(s))      [Apply distributive law.]

• F  (H(s)  M(s))                              [Trivial contradiction.]

• H(s)  M(s)                                                [Use identity law.]

• M(s)                                                             
– Socrates is mortal.
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Another Example
• Definitions:  

H(x) :≡ “x is human”; 
M(x) :≡ “x is mortal”;
G(x) :≡ “x is a god”

• Premises:
– x H(x)  M(x) (“Humans are mortal”) and
– x G(x)  M(x) (“Gods are immortal”).

• Show that x (H(x)  G(x))
(“No human is a god.”)
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The Derivation
– x H(x)  M(x) (“Humans are mortal”) and
– x G(x)  M(x) (“Gods are immortal”).
– x (H(x)  G(x)) (“No human is a god.”)

• x H(x)M(x) and x G(x)M(x).

• x M(x)H(x)[Contrapositive.]

• x [G(x)M(x)]  [M(x)H(x)]

• x G(x)H(x) [Transitivity of .]

• x G(x)  H(x) [Definition of .]

• x (G(x)  H(x)) [DeMorgan’s law.]

• x G(x)  H(x) [An equivalence law.]

• x (H(x)  G(x)) [commutativity]
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End of §1.3-1.4, Predicate Logic

• From these sections you should have learned:
– Predicate logic notation & conventions
– Conversions: predicate logic  clear English
– Meaning of quantifiers, equivalences
– Simple reasoning with quantifiers

• Upcoming topics: 
– Set theory –

• a language for talking about collections of objects.
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